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The t h i r d  fundamental problem of Prandtl 's l i f t i n g  line is extended 

t o  the  case of a f i n i t e  number of accessory conditions and the s o l u t i o n  

is  given. 

rence of such problems3 

Three examples a re  given demonstrating the p rac t i ca l  occur- 

1. PRESENTATION OF TIIE PROBLZM 

In der TragflGeltheory I of "Vier Abhandlungen"" L. Prandtl gives 

as the t h i r d  fundamental problem the following minimum problem (on p .  28) 

"The t o t a l  l i f t  and wiwspan are  given and so a re  p and v; the dis- 

t r i bu t ion  of l i f t  over the span such tha t  the drag is minimum is sought." 

With help from the formula stated in the previously c i t e d  book 

(p. 27) the mathematical statement of the problem in which a coordinate 

'L. Prandtl  and A .  Betz : Vier Abhandlungen zur Hydrodynamik und Aero- 
dynamik. Neudruck aus den Verhandlungen des 111. Internationalen 
Mathematiker - Kongresses zu Heidelberg und aue den Nachtrichten des 
Gesellschaf t der Wessenschafton z u  GGttingen 1927. 
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system siicli that the wing extends from +1 t o  -1 is used 182 

where r ( 4 )  = I'(+l) = 0 (here r (x )  i e  the loca l  lift density, w(x) 

is the induced downwash a t  the point x on the w i n g ) .  The function 

r (x )  may be def b e d  in  the in te rva l  (+l, -1) such that 

J1 r ( x )  w(x) 
-I. 

becomes a minimum under the associated condition 

(3 )  r(x) dx = A 

( A  = a rb i t r a ry  t o t a l  l i f t ) .  

This statement of the pob]em bsbeen  extended by M. Munk" t o  the  

case of the lift a r b i t r a r i l y  directed and d is t r ibu ted  In space, and 

eolved generally. 

One can also generalize the above minimum problem t o  another kind 

in  which instead of the condition ( 3 )  another - and perhaps several  - 
side conditions are prescribed. Three examples w i l l  make this c lear .  

( a )  A f ly ing  a i r f o i l  shall, by uee of a small ai leron deflection, 

be in a f l a t  curve. 

incremental a i leron deflection combined with the s y m e t r i c a l  d i s t r ibu t ion  

What form must the lift dis t r ibu t ion  due t o  the 

?By the symbol s h a l l  be understood the Cauchy principle p a r t  of the 
integral .  s 

'M. Nmk: Isoperimetriche Aufgaben aua der Theory des Fluges. 
Inaugural-Dissertation. Gxttingen 1919. 
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have ir or lo r  t ha t  the increase in  induced drag sha l l  remain as small as 

possible? 

w i t h  a sui table  control-surface shape t o  eliminate so much ai leron deflec- 

E one knows t h i s  d i s t r ibu t ion  then one can approximate it 

% 

t i on  loss .  The question therefore becomes: sought is that  d is t r ibu t ion  

of lift which makes the induced drag ( 2 )  a minimum if the  r o l l i n g  moment 

has a prescribed value. The use of equation (1) is exactly cor rec t  only 

in  the f i rs t  ins tan t  of the a i le ron  deflection, as long as  only small 

turning and rolling motions exist, since only $hen a re  the t ra i l ing 

. vortex l i n e s  s t ra ight .  Nevertheless, one can s t i l l  apply the solution 

- of the formulated pi-oblex ES an approximate solution for small turning 

and rolling veloc it i e s  . 
Another example which leads t o  the same problem, and in which these 

d i f f i c u l t i e s  do not  appear was comunicated t o  me in a f r iendly  manner 

by Prof. Dr. Prandtl. It is th i s ,  the  question of the lift dis t r ibu t ion  

of least drag f o r  a w i n g  with eccentrically applied load generated by a 

r o l l i n g  moment. 

. ( b )  The solution of the th i rd  fundamental problem of Prandtl i e  

wr i t ten  (see (1) page 32) in the  case of the above formulation: 

that is, the lift 1s dis t r ibu ted  in' a kind of ha l f -e l l ipse  over the 

span ( f o r  example, the so l id  l i ne  in  figure 1). If one now changes 

r ( x )  i n  the manner of the broken l ine where A in (3)  r e t a b s  its 
~ 
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value, t h m  it w i l l  change the induced drag only s l i g h t l y  ( in  the  

neighborhood of i t s  minimum). The bending moment about the wing root  

which f o r  symmetrical lift dis t r ibu t ions  can be replaced by 

( 5 )  

would, however, become smaller ( i f  a factor  1/2 is neglected).  

For a wing in f r e e  f l i g h t  the following is s igni f icant :  owing t o  

the diminishing loading the wing can be b u i l t  l igh ter .  Since, however, 

in  s ta t ionary horizontal  f l i g h t  lift and weight are  equal, t h i s  means 

- t h a t  the t o t a l  l i f t  in  (3)  kecmea smaller. 

L 

. 

1 I -1 

Fig!. 1 

If one replaces r ( x )  by kmr(x )  

Fig. 2 

then one var ies  lift ( 3 )  and 

bending moment ( 5 )  proportional t o  A, while the induced drag I s  propor- 

t i o n a l  t o  X*.  One w i l l  also,  with a l i f t  d i s t r ibu t ion  which a t  the 

wingtips ha8 somewhat smaller values than the e l l i p t i c  d i s t r ibu t ion  with 

equal l i f t ,  expect somewhat b e t t e r  drag charac te r i s t ics .  

it must be noted, t h a t  the dependence of the t o t a l  loading on the bending 

It is t rue  
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moment in :he case of the usual w i n g  construction is very slight, so 

t h a t  the e f f ec t  described above I s  very 8m811. 

This consideration leada t o  the following problem statement: it 

shall be t o  make the drag (2) a rninlmwn under the two conditione that 

l i f t  (3) and bending moment (5)  have prescribed values, 

( c )  If one considers a wing that is  curved In the  direction of 

f l i g h t  (see figure 2), then in the caee of the t h l r d  fundamental problem 

of wing theory4 the pitching moment a8 well a s  the t o t a l  lift would be 

held constant. 

r e s u l t  exclusively from the l i f t i n g  force on the  wing. 

zation by means of warped wings a s  in the f l i g h t  of birds.) 

One can now require that the pitchlng moment shall 

(Pi tch s tab i l i -  

Le t  h(x) 

be the distance f romthe  x-axis t o  the l h a  of csat,srs of pressure 

( the  broken line in figure 2 ) .  Then s t a t e  the requirement that 

ll h( x) r ( x )  dx = M 

(pi tching moment prescribed equal t o  M) shall hold and the above 

problem reads: the 1st dis t r ibu t ion  r ( X )  is sought such that (2)  

s h a l l  be a minimum under the conditions (3) and (6). It may be s t a t ed  

that in the general case an a r b i t r a r i l y  shaped wing w i t h  line of centers  

of pressure not  coincident with the forward aerodynamic centers  in the  

two-dimensional problem (T/4 line) w i l l  be given. The problem of 

%deed (see (1) page 25) the i l lus t ra t ion  of the l i f t ing  l i n e  cannot 
be applied In this case, as M. Munk( ( 3 )  page 21) has nevertheless 
shown it is suf f ic ien t  in the case of drag considerations t o  calculate  
only the twodimensional problem of a w i n g  not curved in thedirection 
of f l i g h t .  r ( x )  is conaoquently the projection of the  lift on aplane 
perpendicular *% the  l i n e  of f l i g h t  . 
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. 

determining t h i s  l i n e  f o r  an a rb i t r a r i l y  prescribed wing area involves 

great  d i f f i cu l ty  and as f a r  as I know it has not  up t o  the present been 

solved, One can, nevertheless, approximate the line of centers of 

pressure by the 

from a f l a t  wing. 

T/4 l i n e  as long a s  the wiw does npt vary too much 

It is natural  now, on the basie of this example, t o  extend the  

above formulated problem t o  f i n i t e l y  many prescribed subsidiary condi- 

t ions which a re  l inear  i n  f ix)  , One seeks t o  determine T(x) in the 

w i l l  be a minimum under the N side conditions 

r ( x )  h,(x) cix = A, ( n d ,  . . . , H) (7) 

'r(-1) I r(+l) = 0 hub) and An a rb i t r a r i l y  prescribed, n a t u r a l l y  

f o r  = 0 only hpl(X) E 0 Is allowable f o r  N = 1, hl(x)  I 1, 

Ax = A 

j u s t  a s  can the examples a, b, and c be obtained by analogous speciali-  

the L. Prandtl fOMnulat8d problem follows a s  a par t icu lar  case 

zation. 

2. TRANSFORMATION OF TEE PROBLEM 

By mathematical manipulation of the problem the following trans- 

f omat ions w i l l  be undertaken : 
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Let 

x = cos s , y = cos t 

and use the notation h(x) = b ( e ) ,  (n=l, . . ., N). Using these 

there results5 from (l), (2) (neglecting a factor 1/4) 

1 
n 

f(s) = - sin s 
COB t - cos s 

In the case of known 

first kind. 

f(s) (la) is a Fredholm integral equation sf t h e  

Its solution is known to be6 

at sin t 
cos s - cos t 

where by integration there results 
s+t n sin - 

sin 171 z(s)  = $ J  f(t) log dt (8) 

5The assumptions under which the integrals and infinite series exist and 
under which the applied transformations (interchange of order of inte- 
gration, interchange of integration and summation) are allowed, will 
be considered in a detailed work which will appear shortly under the 
title "Solutions of Some Special Minimum Problems" in the Math. Zeit. 
Moreover a second class of subsidiary conditions will be taken into 
consideration, Addition by the referee: It has appeared in the 
meantime in the Math. &it., Bd. 53 (1950) pages 21-52, 

Tragflcgeltheory. 
Wissenschaften XXX (1938) 

%ee perhaps K. SchrGder: k e r  eine Integralgleichung erstn. Art der 
Sitzungs-berichte der Freussischen Akademie der 
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. 

For simplification write 

s+t sin 7 
= S(s,t) 1 - log 

1[ sin 121 a-t 

and place (8) in (2a) and (7a), giving 

l"l' f(s)f(t) S(s,t) d6 dt 

Since from (la) and (8) the functions z ( s )  and f(s) are clearly 

ilepxdent on each other one can also regard f(s) as the unknown. 

With this the problem to be solved is: determine f(s) in the iniei.vs3 

(0 ,s)  such that (2a) will be a minimum under the associated condition (n). 
For further simplification the following notation will be introduced: 

J o  J o  

With the representation' 
a0 

S(s,t) = 1 4 sin ns sin nt 
n=l 

valid for 0 2 s, t I n, s # t, it follows from ( 9 )  that 

7See, for example, G. Hammel, Integralgleichungen page 20.  
by S. Springer; also 
des Kernes In r in elliptichen Koordinaten. 
Page 186. Formula (16) 

Berlin 1938 
K. Jaeckel, Ermittlung einer Reiheniarstellung 

ZAMM, Bd. 30 (1950) 
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J o  J o  

n=l  

or 

n=l 

with the Fourier s ine coeff ic ients  
n n 

A, = 2 f(s) s i n  nsds, bn = 5 g ( t )  s i n  n t  d t  
II 

(n=l, 2, . ) 

From ( 9 )  and (lo), an6 a i i i t e  S ( ~ ~ t . 1  = S(t,s) (f,g) possesses the 

following properties 

One a l so  has the problem of finding a function f(s) i n  the  

in t e rva l  (0,s) such tha t  - 
(f,f) = min. 

holds under the N subsidiary conditions 

(f,&) = A, (n=l, . . . , N) 
Here (f,g) is defined by (9) and has the  properties (11) 
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3. SOLUTION OF THE PROBLEM 

If the functions h,(s) are linearly dependent, then either there 

are superfluous conditions in (12), or they are contradicted among them- 
* 

selvee, and they are generally not fulfilled. 

Assumption: The functions hn(s) are linearly independent, the 

real numbers An (n=l, . . . , N) are arbitrarily chosen. 

Contention: Then there is exactly one solution fl(s) of the 

above minimum problem and this solution has the form 
H 

f'(S) = 1 An hh(6) 
n=l 

with uniquely determined numbers An. 

Proof: With the orthonormalization process of E. Schmidt one can 

P2nd functions 

n ,  

c ..- n=l n=1, . , N) 
such that 

( G . H ~  5 c, = I for m=n c 

When these equations are inverted the following forms result 
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Now let N 

1 

f '  (s )  = C&{S) 

n=l 

With real coefficients Cfi undetermined for the present, and obtain 

r 

n=l  
Now, if c C r i d k  = A 2  (r=l, . . , , N) shall hold, then the Ch are 

clear ly  determined. With the numbers thus chosen f' fulfills the 

conditim; (12), furthermore f ( s )  obtains the general form 

m = l  m=l 

N N N 

n=l m=n n=l 

It remains to show that f' also makes (f,f) a minimum. Now an 

arbitrary function f ( s )  can always be written in the form 

f(s) = P ( s )  + k(s) (namely with k(s) = f(s) - f"(s))  
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Then if 

(f,ha) = (f'+k,hn) = ( f ' , k J  + (krh:l0) 

= A, + ( k , h d  (n=1, . N )  

f ( s )  satisfies conditions (12) exactly, if 

(k,hn) = 0 for n=l, . . , N 

For the totality of functions f(s) which fulfill the condi- 

tions (12) the following holds, according t o  (11) 

(f,f) = (f'+k,f'+k) = (f',f') + 2(f',k) + (k,k) 

where the equality sign holds only for k ( s )  0, The uniqueness of 

the coefffkients a;l follow with ( l l d )  from the linear independence 

of tb7o functions h'n(s), Therewith the contention is proved, 

If one retwns to the original notation one finds the following 

cvnclusi6ns;. 

4. CONCLUSION 

The functions hb(x) and the real numbers A ,  (nd, . . ., N) 
have given arbitrary values, The function r ( x )  shall be so defined 

in the interval - 1 I x I + 1 that r(-1) = r(+l) = 0 and that under 

the substitution 
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the expression 

is minimized under the subsidiary conditions 

If a function r(x) is given generally, such that the N sub- 

sidiary conditions are satisfied, then this minimum problem has exactly 

one solution, which assumes the form 
N 

dY 
1-xy+ J( 1-x2) (1-y2 J’ 

X-Y 

with real coefficients %. If the functions hn(x) are linearly 

independent then the minimum problem always has a solution and the 

coefficie;its are uniquely determined. 

5 .  APPLICATION 

In the following table some simple functions h(x) are related to 

the appropriate function 

I = r’ h(y) log Il-xy+ 1J( 1-x2) (1-y2) 
J-1 I X-Y I 
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I 

X 

X2 

x3 

1x1 

l x o < x < _ l  

0 - 1 <, x xo I 

n (a2+1) m 
5 

x(2x2+1) di= 
1 +  4 2  

Ix I 2x log 

'(x3 log I +  J=+x ."-x") 
3 1x1 

L(6X4 log -t "-x2 + (6x2+1) G) 
12 1x1 

(xo-x) log 1 - xox + J( 1-xo2) (1-x2) 
XD-x 

+ cos- xo 

Thereby one finds for the first pair of examples stated at the 

outset the solutions: 

. 
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.) 

Subsidiary Condition Solution 

r(x)  = - 8 R x  x Jizz 

\ 
J - 

In  f igure 3 this solution of example A i s  drawn. 

several  curves from the  many solutions of example (b) fo r  

H 

Figure 4 shows 

A = Const., 

variable ( fo r  3nH = 4A the hair' eilpse is seen t o  be a spec ia l  case 

Qf w. 
1 r ( x )  
I 

I 
I 
j 

Fig. 3 to examyle (a) Fig .  4 t o  example (b) 


